Lab 10: Localization (simulation)

Objective

In lab 10, I used a Bayes Filter to implement grid localization. Previously, we saw that only using odometry data would result in inaccuracy in estimating the robot's location. Thus, this allowed for us to use a probabilistic method for localization.

Prelab

In the prelab, we reviewed the Bayes filter and looked at the terminology for the lab.

Grid Localization

The robot's state is represented by a 3D array of (x, y, theta). Due to us using tiles that are 1ftx1ft in real life, the calculations use imperial units to make our lives easier. :)

Since there are an infinite number of locations where the robot could be within any given space, the map is discretized into a 3D grid space. The size of each grid cell is (0.3048, 0.3048, 20) and the total number of cells along each axis are (12,9,18). Each grid stores the probability that the robot is in that cell. All of these probabilities sum to 1 and are updated in real-time as the robot runs. The cell with the highest probability represents the estimated pose of the robot.

The Bayes filter algorithm is shown below:

Implementation

In this lab, the robot drove around in simulation according to a set path and collected both odometry and distance data. I had to implement a series of functions to get the Bayes filter working.

compute_control

Since that is given the previous and current odometry poses, I need to extract the control information, u, for the filter. This function does just that. The implementation was based on the following equations from lecture:

Thus, the code looks like the following:

def compute_control(cur_pose, prev_pose):
""" Given the current and previous odometry poses, this function extracts
the control information based on the odometry motion model.
Args:
cur_pose ([Pose]): Current Pose
prev_pose ([Pose]): Previous Pose
Returns:
[delta_rot_1]: Rotation 1 (degrees)
[delta_trans]: Translation (meters)
[delta_rot_2]: Rotation 2 (degrees)
"""
dely = cur_pose[1] - prev_pose[1]
delx = cur_pose[0] - prev_pose[0]
#direction of movement
angle_deg = np.degrees(np.arctan2(dely,delx))
#rots = motion - direction
delta_rot_1 = mapper.normalize_angle(angle_deg - prev_pose[2])
delta_rot_2 = mapper.normalize_angle(cur_pose[2] - angle_deg)
#translation is just norm
delta_trans = np.sqrt( (delx**2 ) + (dely**2 ))
return delta_rot_1, delta_trans, delta_rot_2

odom_motion_model

In this function, I calculated the probability of the state transition, or the probability that that the robot has reached a position given the previous position and the control inputs (P(x' | x, u) from the algorithm). This is used in the prediction step of the filter. This is calculated using a gaussian distribution of the robot's expected movement and the previous position.

The implementation looks like the following:

def odom_motion_model(cur_pose, prev_pose, u):
""" Odometry Motion Model
Args:
cur_pose ([Pose]): Current Pose
prev_pose ([Pose]): Previous Pose
(rot1, trans, rot2) (float, float, float): A tuple with control data in the format
format (rot1, trans, rot2) with units (degrees, meters, degrees)
Returns:
prob [float]: Probability p(x'|x, u)
"""
#u_expected -- needed to reach pos
#u -- data from model, actual control
u_expected = compute_control(cur_pose, prev_pose)
#gaussian to see if pos reached
p_rot1 = loc.gaussian(u[0], u_expected[0], loc.odom_rot_sigma)
p_trans = loc.gaussian(u[1], u_expected[1], loc.odom_trans_sigma)
p_rot2 = loc.gaussian(u[2], u_expected[2], loc.odom_rot_sigma)
#compute final prob
prob = p_rot1 * p_trans * p_rot2
return prob

predicion_step

This function uses all of the calculations that were previously done in the other functions and combines them to predict where the robot is based on its control. The function loops through each possible state (every x, y, and theta) and calculate the likelihood (bel_bar) of being in this state. For efficiency, a threshold is added to ignore the locations that the robot is extremely unlikely to be at. This value was chosen to be 0.0001.

def prediction_step(cur_odom, prev_odom):
""" Prediction step of the Bayes Filter.
Update the probabilities in loc.bel_bar based on loc.bel from the previous time step and the odometry motion model.
Args:
cur_odom ([Pose]): Current Pose
prev_odom ([Pose]): Previous Pose
"""
u = compute_control(cur_odom, prev_odom) # get control
# loop through all previous
for prev_x in range(mapper.MAX_CELLS_X):
for prev_y in range(mapper.MAX_CELLS_Y):
for prev_a in range(mapper.MAX_CELLS_A):
bel = loc.bel[prev_x][prev_y][prev_a]
if bel >= 0.0001: # if want to recalculate,
# loop through all current
for curr_x in range(mapper.MAX_CELLS_X):
for curr_y in range(mapper.MAX_CELLS_Y):
for curr_a in range(mapper.MAX_CELLS_A):
curr_pose = mapper.from_map(curr_x, curr_y, curr_a)
prev_pose = mapper.from_map(prev_x, prev_y, prev_a)
prob = odom_motion_model(curr_pose, prev_pose, u)
loc.bel_bar[curr_x][curr_y][curr_a] += (prob * bel)

sensor_model

As stated in the function description, this function calculates the probability that the robot would have receieved the current sensor information based on the current pose, or p(z|x). This has 18 potential probabilities because this is the number of different values that the robot measures distance at.

def sensor_model(obs):
""" This is the equivalent of p(z|x).
Args:
obs ([ndarray]): A 1D array consisting of the true observations for a specific robot pose in the map
Returns:
[ndarray]: Returns a 1D array of size 18 (=loc.OBS_PER_CELL) with the likelihoods of each individual sensor measurement
"""
prob_array = np.zeros(mapper.OBS_PER_CELL)
for i in range(mapper.OBS_PER_CELL):
#is obs true
prob_array[i] = loc.gaussian(loc.obs_range_data[i], obs[i], loc.sensor_sigma)
return prob_array

update_step

This is the final step of the Bayes filter. In this step, the sensor model is used to update the prediction. This function returns the belief of the robot for each of the cells based on the past sensor measurements by looping through all possible positions and comparing the known measurements to the actual current measurement from the sensor. The update is then done by multiplying P(z|x) by the predicted belief bel_bar found during the previous prediction step.

def update_step():
""" Update step of the Bayes Filter.
Update the probabilities in loc.bel based on loc.bel_bar and the sensor model.
"""
for curr_x in range(mapper.MAX_CELLS_X):
for curr_y in range(mapper.MAX_CELLS_Y):
for curr_a in range(mapper.MAX_CELLS_A):
prob_z = np.prod(sensor_model(mapper.get_views(curr_x, curr_y, curr_a)))
loc.bel[curr_x][curr_y][curr_a] = prob_z * loc.bel_bar[curr_x][curr_y][curr_a]
loc.bel = loc.bel / np.sum(loc.bel)

Results

The results of the Bayes filter can be seen below. Note that due to both recording and running the simulation at the same time, the robot's trajectory was slightly altered and it bumped into a few walls.

The robot's true pose is shown in green, the odometry readings are in red, and the blue is the Bayes estimation. As expected, the Bayes estimation is much closer to the actual pose. There are moments where the estimated pose greatly deviates from the actual pose, but the robot is able to correct on the next time step. These large deviations may be a result of wildly different odometry data or slight deviations in position while rotating due to the lag and bumping into walls. Additionally, in areas where the sensor readings may look very similar (features on the map are not really unqiue when viewed from a certain angle), these may have caused two different areas to be more likely rather than just the actual one. The robot seemed to also have slight difficulty determining its location when in narrow passageways as well.

----------------- 0 -----------------
2023-05-11 12:21:40,864 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:21:40,926 | INFO |: GT index : (6, 3, 7)
2023-05-11 12:21:40,941 | INFO |: Prior Bel index : (6, 4, 6) with prob = 0.7151764
2023-05-11 12:21:40,960 | INFO |: POS ERROR : (-0.041, -0.076, 12.567)
2023-05-11 12:21:40,986 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:21:46,468 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:21:46,477 | INFO |: GT index : (6, 3, 7)
2023-05-11 12:21:46,482 | INFO |: Bel index : (6, 4, 6) with prob = 1.0
2023-05-11 12:21:46,500 | INFO |: Bel_bar prob at index = 0.7151764499430118
2023-05-11 12:21:46,507 | INFO |: GT : (0.264, -0.076, 322.567)
2023-05-11 12:21:46,518 | INFO |: Belief : (0.305, 0.000, -50.000)
2023-05-11 12:21:46,526 | INFO |: POS ERROR : (-0.041, -0.076, 372.567)
2023-05-11 12:21:46,584 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 1 -----------------
2023-05-11 12:21:48,836 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:21:48,847 | INFO |: GT index : (7, 2, 6)
2023-05-11 12:21:48,852 | INFO |: Prior Bel index : (6, 3, 3) with prob = 0.8039022
2023-05-11 12:21:48,856 | INFO |: POS ERROR : (0.202, -0.160, 411.940)
2023-05-11 12:21:48,863 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:21:53,722 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:21:53,734 | INFO |: GT index : (7, 2, 6)
2023-05-11 12:21:53,739 | INFO |: Bel index : (7, 3, 6) with prob = 1.0
2023-05-11 12:21:53,747 | INFO |: Bel_bar prob at index = 0.0331740593409839
2023-05-11 12:21:53,757 | INFO |: GT : (0.507, -0.465, 661.940)
2023-05-11 12:21:53,773 | INFO |: Belief : (0.610, -0.305, -50.000)
2023-05-11 12:21:53,782 | INFO |: POS ERROR : (-0.103, -0.160, 711.940)
2023-05-11 12:21:53,787 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 2 -----------------
2023-05-11 12:21:55,130 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:21:55,147 | INFO |: GT index : (7, 2, 5)
2023-05-11 12:21:55,157 | INFO |: Prior Bel index : (8, 2, 5) with prob = 0.8929231
2023-05-11 12:21:55,178 | INFO |: POS ERROR : (-0.408, 0.145, 710.548)
2023-05-11 12:21:55,203 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:00,149 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:22:00,168 | INFO |: GT index : (7, 2, 5)
2023-05-11 12:22:00,188 | INFO |: Bel index : (7, 3, 5) with prob = 1.0
2023-05-11 12:22:00,197 | INFO |: Bel_bar prob at index = 0.259601715311708
2023-05-11 12:22:00,205 | INFO |: GT : (0.507, -0.465, 1000.548)
2023-05-11 12:22:00,221 | INFO |: Belief : (0.610, -0.305, -70.000)
2023-05-11 12:22:00,229 | INFO |: POS ERROR : (-0.103, -0.160, 1070.548)
2023-05-11 12:22:00,234 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 3 -----------------
2023-05-11 12:22:01,484 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:01,493 | INFO |: GT index : (7, 1, 5)
2023-05-11 12:22:01,498 | INFO |: Prior Bel index : (8, 2, 5) with prob = 0.9817252
2023-05-11 12:22:01,507 | INFO |: POS ERROR : (-0.339, -0.222, 1070.548)
2023-05-11 12:22:01,516 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:07,316 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:22:07,354 | INFO |: GT index : (7, 1, 5)
2023-05-11 12:22:07,365 | INFO |: Bel index : (2, 3, 0) with prob = 0.9998932
2023-05-11 12:22:07,389 | INFO |: Bel_bar prob at index = 0.0005166582775328697
2023-05-11 12:22:07,396 | INFO |: GT : (0.575, -0.832, 1360.548)
2023-05-11 12:22:07,405 | INFO |: Belief : (-0.914, -0.305, -170.000)
2023-05-11 12:22:07,417 | INFO |: POS ERROR : (1.490, -0.527, 1530.548)
2023-05-11 12:22:07,425 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 4 -----------------
2023-05-11 12:22:10,895 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:10,910 | INFO |: GT index : (8, 0, 8)
2023-05-11 12:22:10,919 | INFO |: Prior Bel index : (8, 2, 5) with prob = 0.9817252
2023-05-11 12:22:10,931 | INFO |: POS ERROR : (-0.092, -0.353, 1508.374)
2023-05-11 12:22:10,952 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:16,342 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:22:16,368 | INFO |: GT index : (8, 0, 8)
2023-05-11 12:22:16,377 | INFO |: Bel index : (7, 1, 8) with prob = 1.0
2023-05-11 12:22:16,391 | INFO |: Bel_bar prob at index = 0.0005156875927387078
2023-05-11 12:22:16,399 | INFO |: GT : (0.823, -0.963, 1798.374)
2023-05-11 12:22:16,412 | INFO |: Belief : (0.610, -0.914, -10.000)
2023-05-11 12:22:16,417 | INFO |: POS ERROR : (0.213, -0.049, 1808.374)
2023-05-11 12:22:16,432 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 5 -----------------
2023-05-11 12:22:22,908 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:22,926 | INFO |: GT index : (11, 1, 11)
2023-05-11 12:22:22,931 | INFO |: Prior Bel index : (8, 2, 5) with prob = 0.9817252
2023-05-11 12:22:22,938 | INFO |: POS ERROR : (0.633, -0.239, 1913.645)
2023-05-11 12:22:22,965 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:28,827 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:22:28,851 | INFO |: GT index : (11, 1, 11)
2023-05-11 12:22:28,858 | INFO |: Bel index : (10, 1, 11) with prob = 0.9943039
2023-05-11 12:22:28,870 | INFO |: Bel_bar prob at index = 0.0014584087397387059
2023-05-11 12:22:28,897 | INFO |: GT : (1.547, -0.849, 2203.645)
2023-05-11 12:22:28,916 | INFO |: Belief : (1.524, -0.914, 50.000)
2023-05-11 12:22:28,938 | INFO |: POS ERROR : (0.023, 0.066, 2153.645)
2023-05-11 12:22:28,958 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 6 -----------------
2023-05-11 12:22:31,785 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:31,796 | INFO |: GT index : (11, 2, 12)
2023-05-11 12:22:31,805 | INFO |: Prior Bel index : (8, 2, 5) with prob = 0.9817252
2023-05-11 12:22:31,814 | INFO |: POS ERROR : (0.754, 0.086, 2299.433)
2023-05-11 12:22:31,834 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:37,352 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:22:37,365 | INFO |: GT index : (11, 2, 12)
2023-05-11 12:22:37,371 | INFO |: Bel index : (11, 3, 13) with prob = 0.9999999
2023-05-11 12:22:37,397 | INFO |: Bel_bar prob at index = 0.0012500178281875558
2023-05-11 12:22:37,403 | INFO |: GT : (1.669, -0.524, 2589.433)
2023-05-11 12:22:37,412 | INFO |: Belief : (1.829, -0.305, 90.000)
2023-05-11 12:22:37,419 | INFO |: POS ERROR : (-0.160, -0.219, 2499.433)
2023-05-11 12:22:37,430 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 7 -----------------
2023-05-11 12:22:39,683 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:39,701 | INFO |: GT index : (11, 3, 12)
2023-05-11 12:22:39,711 | INFO |: Prior Bel index : (8, 2, 5) with prob = 0.9817252
2023-05-11 12:22:39,718 | INFO |: POS ERROR : (0.868, 0.389, 2664.782)
2023-05-11 12:22:39,735 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:45,055 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:22:45,083 | INFO |: GT index : (11, 3, 12)
2023-05-11 12:22:45,088 | INFO |: Bel index : (11, 3, 12) with prob = 1.0
2023-05-11 12:22:45,105 | INFO |: Bel_bar prob at index = 0.036707058707625424
2023-05-11 12:22:45,114 | INFO |: GT : (1.783, -0.221, 2954.782)
2023-05-11 12:22:45,119 | INFO |: Belief : (1.829, -0.305, 70.000)
2023-05-11 12:22:45,129 | INFO |: POS ERROR : (-0.046, 0.084, 2884.782)
2023-05-11 12:22:45,139 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 8 -----------------
2023-05-11 12:22:48,420 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:22:48,442 | INFO |: GT index : (12, 4, 13)
2023-05-11 12:22:48,448 | INFO |: Prior Bel index : (9, 3, 12) with prob = 1.0835743
2023-05-11 12:22:48,462 | INFO |: POS ERROR : (0.643, 0.535, 2905.699)
2023-05-11 12:22:48,480 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:05,179 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:23:05,198 | INFO |: GT index : (11, 4, 13)
2023-05-11 12:23:05,203 | INFO |: Bel index : (9, 6, 9) with prob = 0.5668515
2023-05-11 12:23:05,212 | INFO |: Bel_bar prob at index = 0.010676673621187845
2023-05-11 12:23:05,220 | INFO |: GT : (1.546, 0.153, 3335.699)
2023-05-11 12:23:05,247 | INFO |: Belief : (1.219, 0.610, 10.000)
2023-05-11 12:23:05,259 | INFO |: POS ERROR : (0.327, -0.456, 3325.699)
2023-05-11 12:23:05,272 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 9 -----------------
2023-05-11 12:23:08,936 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:08,958 | INFO |: GT index : (11, 5, 15)
2023-05-11 12:23:08,970 | INFO |: Prior Bel index : (9, 3, 12) with prob = 1.0835743
2023-05-11 12:23:08,991 | INFO |: POS ERROR : (0.380, 0.756, 3299.595)
2023-05-11 12:23:08,997 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:15,160 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:23:15,179 | INFO |: GT index : (11, 5, 15)
2023-05-11 12:23:15,185 | INFO |: Bel index : (10, 6, 16) with prob = 0.9999999
2023-05-11 12:23:15,198 | INFO |: Bel_bar prob at index = 0.0009393469863114192
2023-05-11 12:23:15,206 | INFO |: GT : (1.599, 0.451, 3729.595)
2023-05-11 12:23:15,215 | INFO |: Belief : (1.524, 0.610, 150.000)
2023-05-11 12:23:15,227 | INFO |: POS ERROR : (0.075, -0.159, 3579.595)
2023-05-11 12:23:15,233 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 10 -----------------
2023-05-11 12:23:17,557 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:17,583 | INFO |: GT index : (10, 6, 15)
2023-05-11 12:23:17,590 | INFO |: Prior Bel index : (9, 3, 12) with prob = 1.0835743
2023-05-11 12:23:17,595 | INFO |: POS ERROR : (0.109, 1.083, 3668.956)
2023-05-11 12:23:17,616 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:22,967 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:23:22,997 | INFO |: GT index : (10, 6, 15)
2023-05-11 12:23:23,009 | INFO |: Bel index : (9, 7, 16) with prob = 1.0
2023-05-11 12:23:23,014 | INFO |: Bel_bar prob at index = 0.0005922576808826902
2023-05-11 12:23:23,020 | INFO |: GT : (1.328, 0.779, 4098.956)
2023-05-11 12:23:23,027 | INFO |: Belief : (1.219, 0.914, 150.000)
2023-05-11 12:23:23,033 | INFO |: POS ERROR : (0.109, -0.136, 3948.956)
2023-05-11 12:23:23,049 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 11 -----------------
2023-05-11 12:23:26,502 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:26,527 | INFO |: GT index : (7, 7, 2)
2023-05-11 12:23:26,540 | INFO |: Prior Bel index : (9, 3, 12) with prob = 1.0835743
2023-05-11 12:23:26,553 | INFO |: POS ERROR : (-0.679, 1.327, 4116.984)
2023-05-11 12:23:26,564 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:31,698 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:23:31,725 | INFO |: GT index : (7, 7, 2)
2023-05-11 12:23:31,754 | INFO |: Bel index : (7, 8, 2) with prob = 0.9999999
2023-05-11 12:23:31,758 | INFO |: Bel_bar prob at index = 0.692035296701548
2023-05-11 12:23:31,768 | INFO |: GT : (0.540, 1.022, 4546.984)
2023-05-11 12:23:31,772 | INFO |: Belief : (0.610, 1.219, -130.000)
2023-05-11 12:23:31,779 | INFO |: POS ERROR : (-0.070, -0.197, 4676.984)
2023-05-11 12:23:31,785 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 12 -----------------
2023-05-11 12:23:34,115 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:34,141 | INFO |: GT index : (6, 5, 4)
2023-05-11 12:23:34,147 | INFO |: Prior Bel index : (9, 3, 12) with prob = 1.0835743
2023-05-11 12:23:34,152 | INFO |: POS ERROR : (-1.086, 0.891, 4519.010)
2023-05-11 12:23:34,166 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:39,184 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:23:39,192 | INFO |: GT index : (6, 5, 4)
2023-05-11 12:23:39,208 | INFO |: Bel index : (6, 6, 4) with prob = 1.0
2023-05-11 12:23:39,216 | INFO |: Bel_bar prob at index = 0.5773451726776316
2023-05-11 12:23:39,226 | INFO |: GT : (0.134, 0.587, 4949.010)
2023-05-11 12:23:39,242 | INFO |: Belief : (0.305, 0.610, -90.000)
2023-05-11 12:23:39,256 | INFO |: POS ERROR : (-0.171, -0.023, 5039.010)
2023-05-11 12:23:39,262 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 13 -----------------
2023-05-11 12:23:41,536 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:41,547 | INFO |: GT index : (5, 5, 1)
2023-05-11 12:23:41,558 | INFO |: Prior Bel index : (9, 3, 12) with prob = 1.0835743
2023-05-11 12:23:41,565 | INFO |: POS ERROR : (-1.407, 0.701, 4820.578)
2023-05-11 12:23:41,578 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:46,867 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:23:46,905 | INFO |: GT index : (5, 5, 1)
2023-05-11 12:23:46,915 | INFO |: Bel index : (5, 6, 1) with prob = 1.0
2023-05-11 12:23:46,922 | INFO |: Bel_bar prob at index = 0.14316509774169994
2023-05-11 12:23:46,929 | INFO |: GT : (-0.188, 0.397, 5250.578)
2023-05-11 12:23:46,940 | INFO |: Belief : (0.000, 0.610, -150.000)
2023-05-11 12:23:46,950 | INFO |: POS ERROR : (-0.188, -0.213, 5400.578)
2023-05-11 12:23:46,967 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 14 -----------------
2023-05-11 12:23:50,272 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:50,300 | INFO |: GT index : (4, 5, 0)
2023-05-11 12:23:50,308 | INFO |: Prior Bel index : (3, 5, 1) with prob = 1.1178297
2023-05-11 12:23:50,322 | INFO |: POS ERROR : (0.070, 0.056, 5381.093)
2023-05-11 12:23:50,344 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:55,781 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:23:55,797 | INFO |: GT index : (4, 5, 0)
2023-05-11 12:23:55,804 | INFO |: Bel index : (3, 5, 0) with prob = 1.0
2023-05-11 12:23:55,824 | INFO |: Bel_bar prob at index = 0.322761861441435
2023-05-11 12:23:55,837 | INFO |: GT : (-0.539, 0.361, 5591.093)
2023-05-11 12:23:55,850 | INFO |: Belief : (-0.610, 0.305, -170.000)
2023-05-11 12:23:55,873 | INFO |: POS ERROR : (0.070, 0.056, 5761.093)
2023-05-11 12:23:55,896 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
----------------- 15 -----------------
2023-05-11 12:23:59,386 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:23:59,409 | INFO |: GT index : (4, 5, 1)
2023-05-11 12:23:59,417 | INFO |: Prior Bel index : (3, 5, 1) with prob = 1.1178297
2023-05-11 12:23:59,429 | INFO |: POS ERROR : (0.004, 0.164, 5751.907)
2023-05-11 12:23:59,436 | INFO |: ---------- PREDICTION STATS -----------
2023-05-11 12:24:05,672 | INFO |: ---------- UPDATE STATS -----------
2023-05-11 12:24:05,680 | INFO |: GT index : (4, 5, 1)
2023-05-11 12:24:05,691 | INFO |: Bel index : (3, 5, 1) with prob = 1.0
2023-05-11 12:24:05,707 | INFO |: Bel_bar prob at index = 1.117829711339159
2023-05-11 12:24:05,736 | INFO |: GT : (-0.606, 0.469, 5961.907)
2023-05-11 12:24:05,743 | INFO |: Belief : (-0.610, 0.305, -150.000)
2023-05-11 12:24:05,760 | INFO |: POS ERROR : (0.004, 0.164, 6111.907)
2023-05-11 12:24:05,767 | INFO |: ---------- UPDATE STATS -----------
-------------------------------------
view raw lab10_output hosted with ❤ by GitHub